Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
BMC Public Health ; 24(1): 860, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509557

RESUMEN

BACKGROUND: Reducing Ebola virus transmission relies on the ability to identify cases and limit contact with infected bodily fluids through biosecurity, safe sex practices, safe burial and vaccination. Armed conflicts can complicate outbreak detection and interventions due to widespread disruption to governments and populations. Guinea and the Democratic Republic of the Congo (DRC) have historically reported the largest and the most recent Ebola virus outbreaks. Understanding if conflict played a role in these outbreaks may help in identifying key risks factors to improve disease control. METHODS: We used data from a range of publicly available data sources for both Ebola virus cases and conflict events from 2018 to 2021 in Guinea and the DRC. We fitted these data to conditional logistic regression models using the Self-Controlled Case Series methodology to evaluate the magnitude in which conflict increased the risk of reported Ebola virus cases in terms of incidence rate ratio. We re-ran the analysis sub-nationally, by conflict sub-event type and tested any lagged effects. RESULTS: Conflict was significantly associated with an increased risk of reported Ebola virus cases in both the DRC and Guinea in recent outbreaks. The effect was of a similar magnitude at 1.88- and 1.98-times increased risk for the DRC and Guinea, respectively. The greatest effects (often higher than the national values) were found in many conflict prone areas and during protest/riot-related conflict events. Conflict was influential in terms of Ebola virus risk from 1 week following the event and remained important by 10 weeks. CONCLUSION: Extra vigilance is needed following protests and riot-related conflict events in terms of Ebola virus transmission. These events are highly disruptive, in terms of access to transportation and healthcare and are often in urban areas with high population densities. Additional public health messaging around these types of conflict events, relating to the risks and clinical symptoms may be helpful in reducing transmission. Future work should aim to further understand and quantify conflict severity and intensity, to evaluate dose-response relationships in terms of disease risk.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/prevención & control , República Democrática del Congo/epidemiología , Guinea/epidemiología , Brotes de Enfermedades/prevención & control
2.
Lancet Glob Health ; 12(4): e563-e571, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485425

RESUMEN

BACKGROUND: There have been declines in global immunisation coverage due to the COVID-19 pandemic. Recovery has begun but is geographically variable. This disruption has led to under-immunised cohorts and interrupted progress in reducing vaccine-preventable disease burden. There have, so far, been few studies of the effects of coverage disruption on vaccine effects. We aimed to quantify the effects of vaccine-coverage disruption on routine and campaign immunisation services, identify cohorts and regions that could particularly benefit from catch-up activities, and establish if losses in effect could be recovered. METHODS: For this modelling study, we used modelling groups from the Vaccine Impact Modelling Consortium from 112 low-income and middle-income countries to estimate vaccine effect for 14 pathogens. One set of modelling estimates used vaccine-coverage data from 1937 to 2021 for a subset of vaccine-preventable, outbreak-prone or priority diseases (ie, measles, rubella, hepatitis B, human papillomavirus [HPV], meningitis A, and yellow fever) to examine mitigation measures, hereafter referred to as recovery runs. The second set of estimates were conducted with vaccine-coverage data from 1937 to 2020, used to calculate effect ratios (ie, the burden averted per dose) for all 14 included vaccines and diseases, hereafter referred to as full runs. Both runs were modelled from Jan 1, 2000, to Dec 31, 2100. Countries were included if they were in the Gavi, the Vaccine Alliance portfolio; had notable burden; or had notable strategic vaccination activities. These countries represented the majority of global vaccine-preventable disease burden. Vaccine coverage was informed by historical estimates from WHO-UNICEF Estimates of National Immunization Coverage and the immunisation repository of WHO for data up to and including 2021. From 2022 onwards, we estimated coverage on the basis of guidance about campaign frequency, non-linear assumptions about the recovery of routine immunisation to pre-disruption magnitude, and 2030 endpoints informed by the WHO Immunization Agenda 2030 aims and expert consultation. We examined three main scenarios: no disruption, baseline recovery, and baseline recovery and catch-up. FINDINGS: We estimated that disruption to measles, rubella, HPV, hepatitis B, meningitis A, and yellow fever vaccination could lead to 49 119 additional deaths (95% credible interval [CrI] 17 248-134 941) during calendar years 2020-30, largely due to measles. For years of vaccination 2020-30 for all 14 pathogens, disruption could lead to a 2·66% (95% CrI 2·52-2·81) reduction in long-term effect from 37 378 194 deaths averted (34 450 249-40 241 202) to 36 410 559 deaths averted (33 515 397-39 241 799). We estimated that catch-up activities could avert 78·9% (40·4-151·4) of excess deaths between calendar years 2023 and 2030 (ie, 18 900 [7037-60 223] of 25 356 [9859-75 073]). INTERPRETATION: Our results highlight the importance of the timing of catch-up activities, considering estimated burden to improve vaccine coverage in affected cohorts. We estimated that mitigation measures for measles and yellow fever were particularly effective at reducing excess burden in the short term. Additionally, the high long-term effect of HPV vaccine as an important cervical-cancer prevention tool warrants continued immunisation efforts after disruption. FUNDING: The Vaccine Impact Modelling Consortium, funded by Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation. TRANSLATIONS: For the Arabic, Chinese, French, Portguese and Spanish translations of the abstract see Supplementary Materials section.


Asunto(s)
COVID-19 , Hepatitis B , Sarampión , Meningitis , Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Rubéola (Sarampión Alemán) , Enfermedades Prevenibles por Vacunación , Fiebre Amarilla , Humanos , Infecciones por Papillomavirus/prevención & control , Pandemias , COVID-19/epidemiología , COVID-19/prevención & control , Vacunación , Inmunización , Hepatitis B/tratamiento farmacológico
4.
BMC Public Health ; 23(1): 2351, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017415

RESUMEN

BACKGROUND: Malaysia introduced the two dose measles-mumps-rubella (MMR) vaccine in 2004 as part of its measles elimination strategy. However, despite high historical coverage of MCV1 and MCV2, Malaysia continues to report high measles incidence. This study suggests a novel indicator for investigating population immunity against measles in the Malaysian population. METHODS: We define effective vaccine coverage (EVC) of measles as the proportion of a population vaccinated with measles-containing vaccine (MCV) and effectively protected against measles infection. A quantitative evaluation of EVC throughout the life course of Malaysian birth cohorts was conducted accounting for both vaccine efficacy (VE) and between-dose correlation (BdC). Measles vaccination coverage was sourced from WHO-UNICEF estimates of Malaysia's routine immunisation coverage and supplementary immunisation activities (SIAs). United Nations World population estimates and projections (UNWPP) provided birth cohort sizes stratified by age and year. A step wise joint Bernoulli distribution was used to proportionate the Malaysian population born between 1982, the first year of Malaysia's measles vaccination programme, and 2021, into individuals who received zero dose, one dose and multiple doses of MCV. VE estimates by age and doses received are then adopted to derive EVC. A sensitivity analysis was conducted using 1000 random combinations of BdC and VE parameters. RESULTS: This study suggests that no birth cohort in the Malaysian population has achieved > 95% population immunity (EVC) conferred through measles vaccination since the measles immunisation programme began in Malaysia. CONCLUSION: The persistence of measles in Malaysia is due to pockets of insufficient vaccination coverage against measles in the population. Monitoring BdC through immunisation surveillance systems may allow for the identification of susceptible subpopulations (primarily zero-dose MCV individuals) and increase the coverage of individuals who are vaccinated with multiple doses of MCV. This study provides a tool for assessment of national-level population immunity of measles conferred through vaccination and does not consider subnational heterogeneity or vaccine waning. This tool can be readily applied to other regions and vaccine-preventable diseases.


Asunto(s)
Vacuna Antisarampión , Sarampión , Humanos , Programas de Inmunización , Esquemas de Inmunización , Sarampión/epidemiología , Sarampión/prevención & control , Vacuna Antisarampión/uso terapéutico , Virus del Sarampión , Vacuna contra el Sarampión-Parotiditis-Rubéola , Vacunación , Eficacia de las Vacunas
5.
BMC Infect Dis ; 23(1): 708, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864153

RESUMEN

BACKGROUND: Aedes (Stegomyia)-borne diseases are an expanding global threat, but gaps in surveillance make comprehensive and comparable risk assessments challenging. Geostatistical models combine data from multiple locations and use links with environmental and socioeconomic factors to make predictive risk maps. Here we systematically review past approaches to map risk for different Aedes-borne arboviruses from local to global scales, identifying differences and similarities in the data types, covariates, and modelling approaches used. METHODS: We searched on-line databases for predictive risk mapping studies for dengue, Zika, chikungunya, and yellow fever with no geographical or date restrictions. We included studies that needed to parameterise or fit their model to real-world epidemiological data and make predictions to new spatial locations of some measure of population-level risk of viral transmission (e.g. incidence, occurrence, suitability, etc.). RESULTS: We found a growing number of arbovirus risk mapping studies across all endemic regions and arboviral diseases, with a total of 176 papers published 2002-2022 with the largest increases shortly following major epidemics. Three dominant use cases emerged: (i) global maps to identify limits of transmission, estimate burden and assess impacts of future global change, (ii) regional models used to predict the spread of major epidemics between countries and (iii) national and sub-national models that use local datasets to better understand transmission dynamics to improve outbreak detection and response. Temperature and rainfall were the most popular choice of covariates (included in 50% and 40% of studies respectively) but variables such as human mobility are increasingly being included. Surprisingly, few studies (22%, 31/144) robustly tested combinations of covariates from different domains (e.g. climatic, sociodemographic, ecological, etc.) and only 49% of studies assessed predictive performance via out-of-sample validation procedures. CONCLUSIONS: Here we show that approaches to map risk for different arboviruses have diversified in response to changing use cases, epidemiology and data availability. We identify key differences in mapping approaches between different arboviral diseases, discuss future research needs and outline specific recommendations for future arbovirus mapping.


Asunto(s)
Aedes , Infecciones por Arbovirus , Arbovirus , Fiebre Chikungunya , Dengue , Fiebre Amarilla , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Infecciones por Arbovirus/epidemiología , Fiebre Amarilla/epidemiología , Mosquitos Vectores , Dengue/epidemiología
6.
Vaccines (Basel) ; 11(8)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37631957

RESUMEN

A better understanding of population-level factors related to measles case fatality is needed to estimate measles mortality burden and impact of interventions such as vaccination. This study aimed to develop a conceptual framework of mechanisms associated with measles case fatality ratios (CFRs) and assess the scope of evidence available for related indicators. Using expert consultation, we developed a conceptual framework of mechanisms associated with measles CFR and identified population-level indicators potentially associated with each mechanism. We conducted a literature review by searching PubMed on 31 October 2021 to determine the scope of evidence for the expert-identified indicators. Studies were included if they contained evidence of an association between an indicator and CFR and were excluded if they were from non-human studies or reported non-original data. Included studies were assessed for study quality. Expert consultation identified five mechanisms in a conceptual framework of factors related to measles CFR. We identified 3772 studies for review and found 49 studies showing at least one significant association with CFR for 15 indicators (average household size, educational attainment, first- and second-dose coverage of measles-containing vaccine, human immunodeficiency virus prevalence, level of health care available, stunting prevalence, surrounding conflict, travel time to major city or settlement, travel time to nearest health care facility, under-five mortality rate, underweight prevalence, vitamin A deficiency prevalence, vitamin A treatment, and general malnutrition) and only non-significant associations for five indicators (antibiotic use for measles-related pneumonia, malaria prevalence, percent living in urban settings, pneumococcal conjugate vaccination coverage, vitamin A supplementation). Our study used expert consultation and a literature review to provide additional insights and a summary of the available evidence of these underlying mechanisms and indicators that could inform future measles CFR estimations.

7.
Vaccine ; 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37537094

RESUMEN

BACKGROUND: The Immunization Agenda 2030 (IA2030) Impact Goal 1.1. aims to reduce the number of future deaths averted through immunization in the next decade. To estimate the potential impact of the aspirational coverage targets for IA2030, we developed an analytical framework and estimated the number of deaths averted due to an ambitious vaccination coverage scenario from 2021 to 2030 in 194 countries. METHOD: A demographic model was used to determine annual age-specific mortality estimates associated with vaccine coverage rates. For ten pathogens (Hepatitis B virus, Haemophilus influenzae type B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, Streptococcus pneumoniae, rotavirus, rubella, yellow fever), we derived single measures of country-, age-, and pathogen-specific relative risk of deaths conditional upon coverage rates, leveraging the data from 18 modeling groups as part of the Vaccine Impact Model Consortium (VIMC) for 110 countries. We used a logistic regression model to extrapolate the relative risk estimates to countries that were not modeled by VIMC. For four pathogens (diphtheria, tetanus, pertussis and tuberculosis), we used estimates from the Global Burden of Disease 2019 study and existing literature on vaccine efficacy. A future scenario defining years of vaccine introduction and scale-up needed to reach aspirational targets was developed as an input to estimate the long-term impact of vaccination taking place from 2021 to 2030. FINDINGS: Overall, an estimated 51.5 million (95 % CI: 44.0-63.2) deaths are expected to be averted due to vaccinations administered between the years 2021 and 2030. With immunization coverage projected to increase over 2021-2030 an average of 5.2 million per year (4.4-6.3) deaths will be averted annually, with 4.4 million (3.9-5.1) deaths be averted for the year 2021, gradually rising to 5.8 million (4.9-7.5) deaths averted in 2030. The largest proportion of deaths is attributed to Measles and Hepatitis B accounting for 18.8 million (17.8-20.0) and 14.0 million (11.5-16.9) of total deaths averted respectively. INTERPRETATION: The results from this global analysis demonstrate the substantial potential mortality reductions achievable if the IA2030 targets are met by 2030. Deaths caused by vaccine preventable diseases disproportionately affect LMICs in the African region.

8.
Nat Commun ; 14(1): 4279, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460537

RESUMEN

As the SARS-CoV-2 pandemic progressed, distinct variants emerged and dominated in England. These variants, Wildtype, Alpha, Delta, and Omicron were characterized by variations in transmissibility and severity. We used a robust mathematical model and Bayesian inference framework to analyse epidemiological surveillance data from England. We quantified the impact of non-pharmaceutical interventions (NPIs), therapeutics, and vaccination on virus transmission and severity. Each successive variant had a higher intrinsic transmissibility. Omicron (BA.1) had the highest basic reproduction number at 8.3 (95% credible interval (CrI) 7.7-8.8). Varying levels of NPIs were crucial in controlling virus transmission until population immunity accumulated. Immune escape properties of Omicron decreased effective levels of immunity in the population by a third. Furthermore, in contrast to previous studies, we found Alpha had the highest basic infection fatality ratio (2.9%, 95% CrI 2.7-3.2), followed by Delta (2.2%, 95% CrI 2.0-2.4), Wildtype (1.2%, 95% CrI 1.1-1.2), and Omicron (0.7%, 95% CrI 0.6-0.8). Our findings highlight the importance of continued surveillance. Long-term strategies for monitoring and maintaining effective immunity against SARS-CoV-2 are critical to inform the role of NPIs to effectively manage future variants with potentially higher intrinsic transmissibility and severe outcomes.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Teorema de Bayes , COVID-19/epidemiología , Inglaterra/epidemiología
9.
PLoS Negl Trop Dis ; 17(5): e0011312, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37126498

RESUMEN

BACKGROUND: Understanding and continually assessing the achievability of global health targets is key to reducing disease burden and mortality. The Global Task Force on Cholera Control (GTFCC) Roadmap aims to reduce cholera deaths by 90% and eliminate the disease in twenty countries by 2030. The Roadmap has three axes focusing on reporting, response and coordination. Here, we assess the achievability of the GTFCC targets in Nigeria and identify where the three axes could be strengthened to reach and exceed these goals. METHODOLOGY/PRINCIPAL FINDINGS: Using cholera surveillance data from Nigeria, cholera incidence was calculated and used to model time-varying reproduction number (R). A best fit random forest model was identified using R as the outcome variable and several environmental and social covariates were considered in the model, using random forest variable importance and correlation clustering. Future scenarios were created (based on varying degrees of socioeconomic development and emissions reductions) and used to project future cholera transmission, nationally and sub-nationally to 2070. The projections suggest that significant reductions in cholera cases could be achieved by 2030, particularly in the more developed southern states, but increases in cases remain a possibility. Meeting the 2030 target, nationally, currently looks unlikely and we propose a new 2050 target focusing on reducing regional inequities, while still advocating for cholera elimination being achieved as soon as possible. CONCLUSION/SIGNIFICANCE: The 2030 targets could potentially be reached by 2030 in some parts of Nigeria, but more effort is needed to reach these targets at a national level, particularly through access and incentives to cholera testing, sanitation expansion, poverty alleviation and urban planning. The results highlight the importance of and how modelling studies can be used to inform cholera policy and the potential for this to be applied in other contexts.


Asunto(s)
Cólera , Humanos , Cólera/epidemiología , Cólera/prevención & control , Nigeria/epidemiología , Pobreza , Costo de Enfermedad , Saneamiento , Brotes de Enfermedades
10.
Epidemics ; 43: 100676, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36913804

RESUMEN

In an emergency epidemic response, data providers supply data on a best-faith effort to modellers and analysts who are typically the end user of data collected for other primary purposes such as to inform patient care. Thus, modellers who analyse secondary data have limited ability to influence what is captured. During an emergency response, models themselves are often under constant development and require both stability in their data inputs and flexibility to incorporate new inputs as novel data sources become available. This dynamic landscape is challenging to work with. Here we outline a data pipeline used in the ongoing COVID-19 response in the UK that aims to address these issues. A data pipeline is a sequence of steps to carry the raw data through to a processed and useable model input, along with the appropriate metadata and context. In ours, each data type had an individual processing report, designed to produce outputs that could be easily combined and used downstream. Automated checks were in-built and added as new pathologies emerged. These cleaned outputs were collated at different geographic levels to provide standardised datasets. Finally, a human validation step was an essential component of the analysis pathway and permitted more nuanced issues to be captured. This framework allowed the pipeline to grow in complexity and volume and facilitated the diverse range of modelling approaches employed by researchers. Additionally, every report or modelling output could be traced back to the specific data version that informed it ensuring reproducibility of results. Our approach has been used to facilitate fast-paced analysis and has evolved over time. Our framework and its aspirations are applicable to many settings beyond COVID-19 data, for example for other outbreaks such as Ebola, or where routine and regular analyses are required.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Salud Pública , Reproducibilidad de los Resultados , Brotes de Enfermedades
11.
Lancet Public Health ; 8(3): e174-e183, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36774945

RESUMEN

BACKGROUND: The UK was the first country to start national COVID-19 vaccination programmes, initially administering doses 3 weeks apart. However, early evidence of high vaccine effectiveness after the first dose and the emergence of the SARS-CoV-2 alpha variant prompted the UK to extend the interval between doses to 12 weeks. In this study, we aimed to quantify the effect of delaying the second vaccine dose in England. METHODS: We used a previously described model of SARS-CoV-2 transmission, calibrated to COVID-19 surveillance data from England, including hospital admissions, hospital occupancy, seroprevalence data, and population-level PCR testing data, using a Bayesian evidence-synthesis framework. We modelled and compared the epidemic trajectory in the counterfactual scenario in which vaccine doses were administered 3 weeks apart against the real reported vaccine roll-out schedule of 12 weeks. We estimated and compared the resulting numbers of daily infections, hospital admissions, and deaths. In sensitivity analyses, we investigated scenarios spanning a range of vaccine effectiveness and waning assumptions. FINDINGS: In the period from Dec 8, 2020, to Sept 13, 2021, the number of individuals who received a first vaccine dose was higher under the 12-week strategy than the 3-week strategy. For this period, we estimated that delaying the interval between the first and second COVID-19 vaccine doses from 3 to 12 weeks averted a median (calculated as the median of the posterior sample) of 58 000 COVID-19 hospital admissions (291 000 cumulative hospitalisations [95% credible interval 275 000-319 000] under the 3-week strategy vs 233 000 [229 000-238 000] under the 12-week strategy) and 10 100 deaths (64 800 deaths [60 200-68 900] vs 54 700 [52 800-55 600]). Similarly, we estimated that the 3-week strategy would have resulted in more infections compared with the 12-week strategy. Across all sensitivity analyses the 3-week strategy resulted in a greater number of hospital admissions. In results by age group, the 12-week strategy led to more hospitalisations and deaths in older people in spring 2021, but fewer following the emergence of the delta variant during summer 2021. INTERPRETATION: England's delayed-second-dose vaccination strategy was informed by early real-world data on vaccine effectiveness in the context of limited vaccine supplies in a growing epidemic. Our study shows that rapidly providing partial (single-dose) vaccine-induced protection to a larger proportion of the population was successful in reducing the burden of COVID-19 hospitalisations and deaths overall. FUNDING: UK National Institute for Health Research; UK Medical Research Council; Community Jameel; Wellcome Trust; UK Foreign, Commonwealth and Development Office; Australian National Health and Medical Research Council; and EU.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Anciano , Lactante , Teorema de Bayes , Estudios Seroepidemiológicos , Australia , SARS-CoV-2 , Inglaterra
12.
Emerg Infect Dis ; 28(12): 2472-2481, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36417932

RESUMEN

Cholera outbreaks contribute substantially to illness and death in low- and middle-income countries. Cholera outbreaks are associated with several social and environmental risk factors, and extreme conditions can act as catalysts. A social extreme known to be associated with infectious disease outbreaks is conflict, causing disruption to services, loss of income, and displacement. To determine the extent of this association, we used the self-controlled case-series method and found that conflict increased the risk for cholera in Nigeria by 3.6 times and in the Democratic Republic of the Congo by 2.6 times. We also found that 19.7% of cholera outbreaks in Nigeria and 12.3% of outbreaks in the Democratic Republic of the Congo were attributable to conflict. Our results highlight the value of providing rapid and sufficient assistance during conflict-associated cholera outbreaks and working toward conflict resolution and addressing preexisting vulnerabilities, such as poverty and access to healthcare.


Asunto(s)
Cólera , Humanos , Cólera/epidemiología , Nigeria/epidemiología , República Democrática del Congo/epidemiología , Brotes de Enfermedades , Pobreza
13.
Vaccine ; 40(47): 6806-6817, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36244882

RESUMEN

Despite vaccination being one of the most effective public health interventions, there are persisting inequalities and inequities in immunisation. Understanding the differences in subnational vaccine impact can help improve delivery mechanisms and policy. We analyse subnational vaccination coverage of measles first-dose (MCV1) and estimate patterns of inequalities in impact, represented as deaths averted, across 45 countries in Africa. We also evaluate how much this impact would improve under more equitable vaccination coverage scenarios. Using coverage data for MCV1 from 2000-2019, we estimate the number of deaths averted at the first administrative level. We use the ratio of deaths averted per vaccination from two mathematical models to extrapolate the impact at a subnational level. Next, we calculate inequality for each country, measuring the spread of deaths averted across its regions, accounting for differences in population. Finally, using three more equitable vaccination coverage scenarios, we evaluate how much impact of MCV1 immunisation could improve by (1) assuming all regions in a country have at least national coverage, (2) assuming all regions have the observed maximum coverage; and (3) assuming all regions have at least 80% coverage. Our results show that progress in coverage and reducing inequality has slowed in the last decade in many African countries. Under the three scenarios, a significant number of additional deaths in children could be prevented each year; for example, under the observed maximum coverage scenario, global MCV1 coverage would improve from 76% to 90%, resulting in a further 363(95%CrI:299-482) deaths averted per 100,000 live births. This paper illustrates that estimates of the impact of MCV1 immunisation at a national level can mask subnational heterogeneity. We further show that a considerable number of deaths could be prevented by maximising equitable access in countries with high inequality when increasing the global coverage of MCV1 vaccination.


Asunto(s)
Sarampión , Niño , Humanos , Sarampión/epidemiología , Vacunación , Programas de Inmunización , Inmunización , África/epidemiología , Vacuna Antisarampión
14.
Epidemics ; 41: 100637, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36219929

RESUMEN

Contact tracing, where exposed individuals are followed up to break ongoing transmission chains, is a key pillar of outbreak response for infectious disease outbreaks. Unfortunately, these systems are not fully effective, and infections can still go undetected as people may not remember all their contacts or contacts may not be traced successfully. A large proportion of undetected infections suggests poor contact tracing and surveillance systems, which could be a potential area of improvement for a disease response. In this paper, we present a method for estimating the proportion of infections that are not detected during an outbreak. Our method uses next generation matrices that are parameterized by linked contact tracing data and case line-lists. We validate the method using simulated data from an individual-based model and then investigate two case studies: the proportion of undetected infections in the SARS-CoV-2 outbreak in New Zealand during 2020 and the Ebola epidemic in Guinea during 2014. We estimate that only 5.26% of SARS-CoV-2 infections were not detected in New Zealand during 2020 (95% credible interval: 0.243 - 16.0%) if 80% of contacts were under active surveillance but depending on assumptions about the ratio of contacts not under active surveillance versus contacts under active surveillance 39.0% or 37.7% of Ebola infections were not detected in Guinea (95% credible intervals: 1.69 - 87.0% or 1.70 - 80.9%).


Asunto(s)
COVID-19 , Fiebre Hemorrágica Ebola , Humanos , SARS-CoV-2 , COVID-19/epidemiología , Brotes de Enfermedades , Trazado de Contacto/métodos , Fiebre Hemorrágica Ebola/diagnóstico , Fiebre Hemorrágica Ebola/epidemiología
16.
BMC Infect Dis ; 22(1): 493, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614394

RESUMEN

BACKGROUND: Understanding the characteristics and natural history of novel pathogens is crucial to inform successful control measures. Japan was one of the first affected countries in the COVID-19 pandemic reporting their first case on 14 January 2020. Interventions including airport screening, contact tracing, and cluster investigations were quickly implemented. Here we present insights from the first 3 months of the epidemic in Japan based on detailed case data. METHODS: We conducted descriptive analyses based on information systematically extracted from individual case reports from 13 January to 31 March 2020 including patient demographics, date of report and symptom onset, symptom progression, travel history, and contact type. We analysed symptom progression and estimated the time-varying reproduction number, Rt, correcting for epidemic growth using an established Bayesian framework. Key delays and the age-specific probability of transmission were estimated using data on exposures and transmission pairs. RESULTS: The corrected fitted mean onset-to-reporting delay after the peak was 4 days (standard deviation: ± 2 days). Early transmission was driven primarily by returning travellers with Rt peaking at 2.4 (95% CrI: 1.6, 3.3) nationally. In the final week of the trusted period (16-23 March 2020), Rt accounting for importations diverged from overall Rt at 1.1 (95% CrI: 1.0, 1.2) compared to 1.5 (95% CrI: 1.3, 1.6), respectively. Household (39.0%) and workplace (11.6%) exposures were the most frequently reported potential source of infection. The estimated probability of transmission was assortative by age with individuals more likely to infect, and be infected by, contacts in a similar age group to them. Across all age groups, cases most frequently onset with cough, fever, and fatigue. There were no reported cases of patients < 20 years old developing pneumonia or severe respiratory symptoms. CONCLUSIONS: Information collected in the early phases of an outbreak are important in characterising any novel pathogen. The availability of timely and detailed data and appropriate analyses is critical to estimate and understand a pathogen's transmissibility, high-risk settings for transmission, and key symptoms. These insights can help to inform urgent response strategies.


Asunto(s)
COVID-19 , Adulto , Teorema de Bayes , COVID-19/epidemiología , Humanos , Japón/epidemiología , Pandemias/prevención & control , SARS-CoV-2 , Adulto Joven
17.
BMC Infect Dis ; 22(1): 288, 2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35351008

RESUMEN

BACKGROUND: Vibrio cholerae is a water-borne pathogen with a global burden estimate at 1.4 to 4.0 million annual cases. Over 94% of these cases are reported in Africa and more research is needed to understand cholera dynamics in the region. Cholera data are lacking, mainly due to reporting issues, creating barriers for widespread research on cholera epidemiology and management in Africa. MAIN BODY: Here, we present datasets that were created to help address this gap, collating freely available sub-national cholera data for Nigeria and the Democratic Republic of Congo. The data were collated from a variety of English and French publicly available sources, including the World Health Organization, PubMed, UNICEF, EM-DAT, the Nigerian CDC and peer-reviewed literature. These data include information on cases, deaths, age, gender, oral cholera vaccination, risk factors and interventions. CONCLUSION: These datasets can facilitate qualitative, quantitative and mixed methods research in these two high burden countries to assist in public health planning. The data can be used in collaboration with organisations in the two countries, which have also collected data or undertaking research. By making the data and methods available, we aim to encourage their use and further data collection and compilation to help improve the data gaps for cholera in Africa.


Asunto(s)
Cólera , Vibrio cholerae , Cólera/epidemiología , República Democrática del Congo/epidemiología , Humanos , Nigeria/epidemiología , Pandemias , Estados Unidos
18.
PLOS Glob Public Health ; 2(12): e0000869, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36962831

RESUMEN

Nigeria currently reports the second highest number of cholera cases in Africa, with numerous socioeconomic and environmental risk factors. Less investigated are the role of extreme events, despite recent work showing their potential importance. To address this gap, we used a machine learning approach to understand the risks and thresholds for cholera outbreaks and extreme events, taking into consideration pre-existing vulnerabilities. We estimated time varying reproductive number (R) from cholera incidence in Nigeria and used a machine learning approach to evaluate its association with extreme events (conflict, flood, drought) and pre-existing vulnerabilities (poverty, sanitation, healthcare). We then created a traffic-light system for cholera outbreak risk, using three hypothetical traffic-light scenarios (Red, Amber and Green) and used this to predict R. The system highlighted potential extreme events and socioeconomic thresholds for outbreaks to occur. We found that reducing poverty and increasing access to sanitation lessened vulnerability to increased cholera risk caused by extreme events (monthly conflicts and the Palmers Drought Severity Index). The main limitation is the underreporting of cholera globally and the potential number of cholera cases missed in the data used here. Increasing access to sanitation and decreasing poverty reduced the impact of extreme events in terms of cholera outbreak risk. The results here therefore add further evidence of the need for sustainable development for disaster prevention and mitigation and to improve health and quality of life.

19.
BMC Infect Dis ; 21(1): 1177, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34809609

RESUMEN

BACKGROUND: Temperature and precipitation are known to affect Vibrio cholerae outbreaks. Despite this, the impact of drought on outbreaks has been largely understudied. Africa is both drought and cholera prone and more research is needed in Africa to understand cholera dynamics in relation to drought. METHODS: Here, we analyse a range of environmental and socioeconomic covariates and fit generalised linear models to publicly available national data, to test for associations with several indices of drought and make cholera outbreak projections to 2070 under three scenarios of global change, reflecting varying trajectories of CO2 emissions, socio-economic development, and population growth. RESULTS: The best-fit model implies that drought is a significant risk factor for African cholera outbreaks, alongside positive effects of population, temperature and poverty and a negative effect of freshwater withdrawal. The projections show that following stringent emissions pathways and expanding sustainable development may reduce cholera outbreak occurrence in Africa, although these changes were spatially heterogeneous. CONCLUSIONS: Despite an effect of drought in explaining recent cholera outbreaks, future projections highlighted the potential for sustainable development gains to offset drought-related impacts on cholera risk. Future work should build on this research investigating the impacts of drought on cholera on a finer spatial scale and potential non-linear relationships, especially in high-burden countries which saw little cholera change in the scenario analysis.


Asunto(s)
Cólera , Epidemias , África/epidemiología , Cólera/epidemiología , Brotes de Enfermedades , Sequías , Humanos , Modelos Lineales
20.
BMC Public Health ; 21(1): 2049, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34753437

RESUMEN

BACKGROUND: Deaths due to vaccine preventable diseases cause a notable proportion of mortality worldwide. To quantify the importance of vaccination, it is necessary to estimate the burden averted through vaccination. The Vaccine Impact Modelling Consortium (VIMC) was established to estimate the health impact of vaccination. METHODS: We describe the methods implemented by the VIMC to estimate impact by calendar year, birth year and year of vaccination (YoV). The calendar and birth year methods estimate impact in a particular year and over the lifetime of a particular birth cohort, respectively. The YoV method estimates the impact of a particular year's vaccination activities through the use of impact ratios which have no stratification and stratification by activity type and/or birth cohort. Furthermore, we detail an impact extrapolation (IE) method for use between coverage scenarios. We compare the methods, focusing on YoV for hepatitis B, measles and yellow fever. RESULTS: We find that the YoV methods estimate similar impact with routine vaccinations but have greater yearly variation when campaigns occur with the birth cohort stratification. The IE performs well for the YoV methods, providing a time-efficient mechanism for updates to impact estimates. CONCLUSIONS: These methods provide a robust set of approaches to quantify vaccination impact; however it is vital that the area of impact estimation continues to develop in order to capture the full effect of immunisation.


Asunto(s)
Sarampión , Fiebre Amarilla , Cohorte de Nacimiento , Humanos , Sarampión/epidemiología , Sarampión/prevención & control , Salud Pública , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...